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The expanded ensemble density of states method(ExEDOS) is used to investigate the effective interaction
of a spherical colloidal particle suspended in a confined liquid crystal(LC) with a substrate. The potential of
mean force(PMF) is determined as a function of the normal distance between the particle and the substrate‘s
surface. The presence of the substrate induces a layered structure of the LC, which in turn greatly influences
the PMF. We analyze the structure of the Saturn ring defect that accompanies the colloidal sphere, and find that
the ring is displaced slightly towards the surface when the sphere is within the first LC surface layer. A
transition occurs from an overall attraction of the colloid to the substrate to a global repulsion when the
sphere‘s radius is roughly twice the length of the LC molecules.
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I. INTRODUCTION

Suspensions of colloidal particles in nematic liquid crys-
tals (LCs), bulk or confined, exhibit a number of interesting
characteristics; these include the formation of topological de-
fects and the occurrence of anisotropic interactions between
colloidal particles. Several studies have considered these
phenomena from both the experimental[1–3] and theoretical
points of view [4–8]. While these studies have focused on
micrometer length scales, a number of more recent publica-
tions has appeared that probed the nanometer scale aspect of
the problem through the use of molecular dynamics simula-
tions [9–12].

The alignment of liquid crystalline(LC) films on a sub-
strate is remarkably sensitive to surface chemistry and na-
nometer scale topography. Self-assembled monolayers
(SAM) of alkanethiols chemisorbed on obliquely deposited
gold films exhibit well-defined surface chemistry and topog-
raphy and are uniquely suited to investigate the response of
LCs to surface characteristics[13]. These surfaces can be
used to induce a uniform alignment of the LC extending over
tens of microns. The specific binding of proteins or viruses to
bio-receptors embedded in SAMs distorts the local nematic
order; this perturbation is further amplified into the bulk and
results in the formation of multidomains that can be detected
with an optical microscope. This ability of LCs to optically
amplify and transduce binding events at surfaces has been
employed to design LC-based bio-sensors[14,15].

In a bio-sensor, a binding of a protein is detected through
the formation of topological defects triggered by distortion
of local nematic field at the binding site. The size of the
proteins in these experimental sensors ranges from 3 to 5 nm
[14,15] (compare that to the length of a typical LC former,
e.g. pentylcyanobiphenyl 5CB at 1.8 nm); the shape(or con-
formation) of these proteins is largely globular. A better un-
derstanding of the perturbation of the nematic field by a pro-
tein could lead to effective designs for such sensors. While
we would benefit considerably from atomistic-level simula-
tions of proteins suspended in liquid crystals, calculations of
that magnitude would require extraordinary computational

resources. A reasonable compromise between molecular-
level resolution and computational feasibility can be
achieved by resorting to a coarse-grained model. In this work
we model liquid crystal molecules as Gay-Berne ellipsoids,
and we examine how spherical particles of different sizes
interact with a substrate through the liquid crystal. By adopt-
ing such a model, we are able to examine the effects of the
shape, size, and anchoring properties of the colloids and their
interactions with surfaces at a molecular level. Molecular
simulations provide unique insights regarding phenomena at
the nanometer scale and they do not require any assumptions
(other than those implicit in the choice of a model or force
field), thereby providing an ideal complement to studies in-
volving continuum and field theories(and thus strictly valid
only at macro- or mesoscopic length scales).

II. SIMULATION METHODS

The system under consideration consists ofN liquid crys-
tal particles confined by two soft repulsive walls atz=0 and
z=Zwall. A soft repulsive sphere of radiusR is separated from
the lower surface by a distancezsph [see Fig. 1(a)]; zsph plays
the role of a reaction coordinatej. A recently proposed ex-
panded ensemble density of states method(ExEDOS) is used
in this work to perform the free energy or potential of mean
force (PMF) calculations. This method offers advantages in
that it facilitates good sampling of phase space without prior
knowledge of the energy landscape of the system.

In accordance with the expanded ensemble technique, the
reaction coordinate is discretized or expanded; an expanded
statem [see Fig. 1(b)] is defined as

mth state; sm− 1d D z+ zsph
ref ø zsph, mD z+ zsph

ref , s1d

where the reference value ofzsph
ref defines the lower boundary

for the reaction coordinate. IfM such states are introduced,
the partition function for the entire system at constant num-
ber of particlesN, volumeV, and temperatureT is given by
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V = o
m=1

M

QsN,V,T,mdgm = o
m=1

M

Qmgm, s2d

whereQm andgm designate a partition function and a weight-
ing factor for a statem, respectively. The partition function is
related to the free energy or PMF,wsjmd, of the system
through the following expression:

bwsjmd = − ln Qm. s3d

If the weight factors are equal to 1/Qm the probability of
visiting a statem becomes uniform and proportional to 1/V.
In that case, the PMF can be obtained from the known 1/gm.
By designing an algorithm that ensures equally probable vis-
its to all states, one can ensure that the weighting factors,gm,
provide a faithful estimate of the inverse density of states,
Qm. The PMF is then obtained from

bfwwtszsph,md − wwtszsph,1dg = − ln
Qm

Q1
= fln gm − ln g1g.

s4d

Only a brief outline of the algorithm employed to achieve
uniform state sampling is provided here. Details can be
found in [16,17]. Every time a statem is visited(i.e., when-
ever thez coordinate of the sphere changes) the weightgm is
modified by an arbitrary convergence factorf according to

gm → gm/f , s5d

and the histogram of visits to that state is updated. The ac-
ceptance criteria for changing from anold state to anewstate
are given by

Paccsold→ newd = minh1, expf− bsUnew− Uoldd

+ sln gnew− ln golddgj

= minh1, expf− b D U + D ln ggj. s6d

Once a global histogram for a given value off is sufficiently
flat (the minimum histogram entry being at least 85% of the
average), f is decreased according to a monotonically de-
creasing function(the square root is commonly used). The
random walk cycle then resumes with a smaller value off.
The simulation proceeds untilf falls below a certain thresh-

old value. In traditional DOS simulations, threshold values
of 10−7 to 10−8 are enforced to achieve an acceptable accu-
racy for the density of states. In this application much less
stringent valuess10−2 to 10−3d are sufficient. In particular, the
initial value of ln f was set at 0.1(all ln gm were initialized
to the same value of 0.1 at the beginning of a simulation); it
was halved four times to a final value of 0.00625.

The PMF can also be obtained independently by measur-
ing and integrating the mean forceFsph as a function ofzsph,

wforceszsph,md − wforceszsph,1d =E
zsph,1

zsph,m

Fsphszddz. s7d

The mean force is a simple average of the resultant force due
to the interactions between the colloidal sphere and the LC
molecules within the cutoff radius of the sphere. The two
independent estimates of the PMF,wwt [Eq. (4)] and wforce

[Eq. (7)], must agree, and the agreement, in addition to the
predetermined threshold value off, can be used as a criterion
for convergence of the weightsgm.

Since the two final PMF curveswwt andwforce are in close
agreement, we present only the latter as the results for the
PMF in Sec. IV. The reason for our choice is that the inte-
gration of the force yields a smoother curve than that ob-
tained from the weightsgm.

III. SIMULATION DETAILS

The system under study comprises at least 11 460(14 500
for the largest sphere) liquid crystal particles confined be-
tween two soft repulsive walls atz=0 andz=Zwall. The LC
particles are represented by soft repulsive ellipsoids of revo-
lution having length to widthss0d ratio k of 3. Each mol-
eculei is characterized by a center of mass position vectorr i
and an orientation unit vectorûi. Mesogensi and j interact
along an intermolecular vectorr i j =r i −r j sur̂ i j u =1d via a
shifted and truncated Gay-Berne(GB) potential,

Uij = H4«0s%i j
−12− %i j

−6d + «0, %i j
6 , 2

0, %i j
6 . 2

s8d

%i j = sur i j u− si j + s0d/s0, s9d

FIG. 1. (a) Schematic view of the system.(b) Definition of the expanded states.(c) Various interactions between the LC particles and the
colloid and the substrate.
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si j = soF1 −
x

2
H sr̂ i j · ûi + r̂ i j · û jd2

1 + xûi · û j

+
sr̂ i j · ûi − r̂ i j · û jd2

1 − xûi · û j
JG−1/2

,

s10d

x =
k2 − 1

k2 + 1
, s11d

wheresi j describes a contact distance between a pair of el-
lipsoids i and j , ands0 and«0 are length and energy param-
eters.

In addition, the LCs interact with all interfaces according
to the same potential as in Eq.(8), with %i j defined differ-
ently for a sphere and a surface:

%i j = sur i − rsphu− R+ s0/2d/s0, s12d

%i j = suziu + so/2d/s0. s13d

In this case,rsph and uziu denote the position vector for the
center of mass of the sphere of radiusR and the normal
distance of a mesogeni from a surface, respectively. These
potentials result in homeotropic(perpendicular) anchoring of
LC molecules at all interfaces. The force on a sphere due to
a given mesogen is calculated as the derivative of the inter-
action potential between the liquid crystal and the sphere
with respect toz; due to symmetry in thesx,yd plane, only
the z component of the force contributes to the total force.
The surface and sphere interact as hard bodies: the minimum
distance possible between a surface and the center of mass of
the sphere is the radius of the sphere. In this work the radius
of the sphere was varied from 3s0 to 6s0, while the separa-
tion between the walls was set atZwall=34s0.

Simulations were conducted at a reduced temperatureTp

=kT/«0=1.0 anddensity rp=Ns0
3/V=0.335. All variables

henceforth are reduced with respect to the length and energy
parameterss0 and «0 and the superscripts are dropped for
brevity. The simulation box is rectangular with side lengths
equal in thex andy directions. Periodic boundary conditions
are used in thex andy directions.

Before proceeding with this system, we emphasize the
importance of the structure of the LC in a confined system in
the absence of a colloid: as was pointed out earlier[16], it is
this structure that largely determines the nature of the inter-
actions between the colloid and a substrate. Figure 2 shows
the density and second rank order parametersP2d profiles for
a confined system obtained from an independent simulation.
HereP2 is the largest eigenvalue of the order parameter ten-
sorQ calculated from the orientationsûi of NV particles in a
sample volume as

Q =
1

Nv
o
i=1

NV S3

2
ûiûi −

1

2
ID , s14d

whereI denotes the identity tensor. The eigenvectorn asso-
ciated withP2 is the director or the average orientation of the
NV particles.

From Fig. 2 one can see that several layers are formed at
the surface. In the midsection the density andP2 profiles are
relatively flat. In this work we are mostly concerned with the

molecular-level structure of the colloidal-liquid crystal sys-
tem; we expect strong features to arise in the immediate vi-
cinity of the surface and much weaker, bulklike structure in
the midsection of the system, i.e., a relatively flat PMF pro-
file. It is therefore reasonable to set the range ofzsph between
a lower boundary equal to the radius of the sphere and an
upper boundary of 13—15. From a computational point of
view this range is rather large, particularly considering that
the separation between the states,Dz, must be small for ac-
curate integration of the mean force. For our choice ofDz of
0.01, the entire range of the reaction coordinate was divided
into fully overlapping windows of width 2, i.e., each window
consists ofM =200 states in a segmentfzsph,1,zsph,1+2g. A
move to a new state, i.e., a move of a sphere in thez direc-
tion (its x andy coordinates are kept at zero throughout the
entire simulation), is attempted every Monte Carlo cycle; a
cycle consists of a trial move for all liquid crystal molecules.

IV. RESULTS AND DISCUSSION

Figure 3 shows results for the mean force, and Fig. 4
shows the corresponding potential of mean force for spheres
of different sizes. The key variable for characterization of the
interactions between a sphere and the substrate is the dis-
tance between the surface of the substrate and the surface of
the sphere,s=zsph−R. With this choice of reaction coordi-
nate, the PMF and mean force profiles collapse nicely in
terms of the local minima and maxima. Moreover, when a
density profilerszd for a confined system(in the absence of
a colloid) is superimposed on the PMF profiles, the peaks of
rszd coincide with the spheres minima in the PMF curves,
indicating that the preferential separation between the sub-
strate and the spheres’ surfaces is such that the latter coincide
with the middle of dense surface LC layers; this interpreta-
tion differs from one adopted in a previous publication[1].

For the separation between walls considered here,Zwall
=34, in the absence of the colloid one can identify a bulk
region, where the LC does not exhibit any structure(namely,
the P2szd and rszd profiles are flat, as in Fig. 2). This bulk

FIG. 2. Density(dashed line) and P2 (solid line) profiles for a
confined system.
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region spans the interval 13øzø21. To avoid or minimize
finite-size effects in the computation of the PMF between a
colloid and a wall, the bulk region must be large enough to
accommodate an entire colloid, so that its surface is suffi-
ciently removed from the LC structure-rich region of the
second wall. Otherwise, the sphere starts to interact with the
second substrate, and the PMF is no longer flat in the middle
of the film. This condition is satisfied only for the two small-
est radii considered in this work, namelyR=3 and 4. ForR
=5 and 6, however, this is no longer the case; nonetheless,
the PMF can still be calculated for sufficiently small values
of s.

It is apparent from Figs. 3 and 4 that the general shape of
the mean forceFsph and PMF is not affected by the size of a
sphere; rather, the extent of repulsion or attraction intensifies
with increasing size. For all sizes the mean force is strongly

repulsive in the immediate vicinity of the surface, and it
reaches a maximum ats<0.8. The force then decreases rap-
idly, dropping to zero at 1 and eventually reaching its mini-
mum value ats=1.3. Henceforth the force exhibits a damped
oscillatory behavior with a low frequency wavelength of
2.5—2.6, coinciding with the thickness of the LC layers
formed at the surface. Force oscillations die out within 2—3
wavelengths, at which point the force becomes effectively
zero. Correspondingly, the PMF calculated as the negative
integral ofFsph is shifted to equal zero at larges and displays
peaks and wells with the same frequency as the force profile;
the maxima and minima in these oscillations coincide with
zeroes of the force.

Quantitatively, the largest difference between the curves
for various sphere sizes is observed over the range of
sP s0,1d, i.e., the first surface layer of the LC. Clearly, the
repulsion at the substrate dominates and dictates the overall
character of the interactions between the colloid and the sur-
face. Note that the repulsive force at the substrate increases
at a higher rate than that at which the attractive force ats
=1.3 decreases with the size of the sphere. Since further
undulations are virtually indistinguishable in frequency and
amplitude, it is the value of the negative integral ofFsph over
this short range ofs that determines the sign of the local
minima in the PMF profiles. Eventually, asR increases, these
minima adopt positive values compared to the PMF of zero
at larges or, in other words, the overall interaction with the
substrate becomes repulsive. In fact, we are able to discern
this trend in the range of radii considered in this work:
spheres of radii of 5 and 6 are clearly repelled by the sub-
strate. We anticipate that for much larger spheres the inter-
actions with the substrate will become prevalently repulsive.
Conceivably, in the continuum limit one would expect to
observe global repulsive forces — this is indeed the case
reported in[4,8], where the interactions between a colloidal
sphere and a substrate in the continuum description exhibit a
purely repulsive character.

To understand what causes the change in sign for the
mean force and, consequently, the character of the PMF pro-
file for sù1, we analyze the LC density profiles at the values
of s corresponding to the first minimumss=smin,1=1d, first
maximum ss=smax,1=2d, and second minimumss=smin,2

=3.3d in the PMF. To obtain the necessary data, we ran a
series of separateNVT ensemble simulations with a sphere
fixed at the indicated values ofs. These simulations were run
for 53105 Monte Carlo cycles and trajectories were re-
corded every 2000 cycles; the initial configurations were ex-
tracted from the ExEDOS simulations when lnf equaled
0.00625. For the analysis of these trajectories we employed
the cylindrical symmetry of the system around the axis going
through the center of mass of the sphere and perpendicular to
the substrate. For each configuration, the LC molecules were
rigidly rotated around the axis of symmetry until their center
of mass coordinates coincided with thexz plane. A two-
dimensional histogram was constructed on a rectangular grid
in x andz, and the average number density was calculated for
each bin. The resulting density contour maps at the selected
positions of the largest sphere are presented in Fig. 5.

As is immediately apparent from the density profiles(see
Fig. 5), liquid crystals form a highly dense first layer(corre-

FIG. 3. Mean force acting on colloidal spheres of radii in the
range 3—6. The arrow indicates an increasing radius.

FIG. 4. The potential of mean force between the surface and the
spheres of radii 3—6. The density of the confined system without
the sphere(solid line) superimposed on the PMF profiles was scaled
and shifted along they axis by an arbitrary amount.
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sponding to the red color on the plot) and less dense second
layer (light blue) at the surfaces of both the sphere and the
substrate. The space between these layers appears dark blue
— a density of nearly zero, which translates into virtually no
molecular centers of mass present in the corresponding bins.
Note that a cavity can be observed in the space where the
sphere breaks contact with the substrate and curves away
from it. In fact, the first LC layer shared by the sphere and
the substrate ats=1 is rarified(from the density value of 1.8
to 0.8) where the surfaces break away from each other(150°
clockwise from positive vertical axis). This is caused by the
molecules’ tendency to satisfy anchoring conditions on both
surfaces simultaneously — therefore, it is the sphere’s cur-
vature that is responsible for breaking the shared dense layer
in two. A close inspection shows that the rarified or diffuse
region is occupied by the molecules that oscillate between
the two surfaces but are still able to satisfy anchoring condi-
tions on both of them; the cavity, however, contains essen-
tially no molecular centers of mass, but, rather, the ends of
the molecules from the sphere and substrate surface layers.
The “break”-point (along with the cavity) propagates and
expands even further as the sphere moves upward. This high-
est degree of diffusion of the first dense layer corresponds to
the maximum in the free energy and a highly unstable state
ss=2d. Moving further along the vertical direction stabilizes
the system; the spacing between the substrate and the sphere
allows both interfaces to satisfy anchoring conditions by
forming exactly two layersss=3.3d. Note, however, that at
the second minimum, the second, dense surface layer in-
duced by the presence of the substrate is now disturbed by
the sphere in the same manner as the first layer was disturbed
for s=1. This situation repeats itself with each new surface
layer until the density profile and the PMF profile become
featureless.

The discrepancy between the directions of the molecules
dictated by the two interfaces translates into elastic bend en-
ergy that is higher in the structured region in the vicinity of
the substrate than in the bulk. Therefore, the elastic energy
contribution to the PMF is repulsive in character. On the
other hand, the attraction between the substrate and a sphere

is caused by a variation in the liquid crystal density and is
entropic in nature. Together, these two contributions result in
the observed oscillatory character of the PMF profile.

We next determine how the proximity to the substrate
modifies the structure of the Saturn ring defect that is formed
around a sphere. For this purpose, we conduct the same
analysis as for the density data. This time, however, theQ
tensor defined in Eq.(14) is collected for each bin. The order
parameterP2 and the directorn were computed as the largest
eigenvalue of the order parameter tensor and the eigenvector
associated with it, respectively. The resultingP2 contour map
as well as the director profile at the selected positions of the
largest sphere are presented in Fig. 6 and 7. Dispersion of
spherical particles in the liquid crystal is accompanied by the
formation of topological defects, such as the Saturn ring dis-
clination line defect and the hedgehog point defect. The sta-
bility of these defects depends on the size of the droplets and
the confinement conditions(see Ref. [8] and references
therein). In our simulated system, we observe the formation
of Saturn ring defects in the bulk and under confinement.
The Saturn ring disclination line is described by a circumfer-
ence in the equatorial plane of a spherical particle and rep-
resents the points in space where the director field is discon-
tinuous. For example, the director profile on the utmost right
panel in Fig. 7 illustrates the location of the disclination line

FIG. 5. (Color online) Density contour maps in thexz plane at
(left to right) the first minimumss=1d, first maximumss=2d, and
second minimumss=3.3d seen in PMF forR=6. (See text for
details.)

FIG. 6. (Color online) P2 contour maps in thexzplane at(left to
right) the first minimumss=1d, first maximumss=2d, and second
minimum ss=3.3d seen in PMF forR=6. (See text for details.)

FIG. 7. Director profiles in thexz plane at(left to right) the first
minimum ss=1d, first maximumss=2d, and second minimumss
=3.3d seen in PMF forR=6. Drawn circles indicate the Saturn ring
defect cores; the arrows indicate deviations from the equatorial
plane.

POTENTIAL OF MEAN FORCE BETWEEN A SPHERICAL… PHYSICAL REVIEW E 69, 061703(2004)

061703-5



in the middle of a drawn circle. The director discontinuity is
caused by the abrupt change in preferred molecular orienta-
tions at the surface of the sphere(horizontal) and in the bulk
(vertical). Consequently, the defect is characterized by low
molecular coalignmentP2 and high biaxiality.

The order parameter maps shown in Fig. 6 indicate a lay-
ered structure of the LC near the substrate;P2 varies from
0.95 in the middle of the layer to 0.65 in between the layers.
The blue color seen around the equatorial plane of the sphere
indicates the presence of the Saturn ring disclination line.
The earlobe-shaped region of lowP2 associated with the
defect is stretched towards the substrate as the sphere ap-
proaches its surface(see also Fig. 7). Also note that highly
oriented substrate surface layers of LC molecules(red or
orange) cut into the defect(blue) region, thereby slicing off
areas with anomalously lowP2 (cyan blue color correspond-
ing to P2<0.4). This process is enabled by the presence of
highly dense and highly oriented first and second substrate-
induced surface layers, whose vertical orientation conflicts
with the tilted orientation of the sphere-induced surface
layer. As discussed above, these regions are characterized by
low molecular centers of mass occupancy as molecules pref-
erentially reside in a surface layer rather than in between the
layers. It must be pointed out that the third and fourth
substrate-induced surface layers are significantly weakened
(much lower density andP2 variation), and do not affect the
shape of the defect region.

For the larger spheres considered here, i.e.R=5,6, the
equatorial plane around which the Saturn ring resides is
above the first two strongly expressed layers. For smaller
spheres, the equatorial plane is roughly at the same level as
these two first layers and, hence, the distortion of the defect
region is enhanced, especially when the sphere is close to the
substrate. For comparison with the largest sphere, we plotted
the density, order parameter, and biaxiality maps forR=3 at
s=1 in Fig. 8. Here biaxiality is defined as a third of the
difference between the middle-valued and the smallest eigen-
values of theQ tensor[see Eq.(14)]. The location of a defect
is taken as a minimum inP2 and a maximum in biaxiality.
What distinguishes the order parameter map in this case is

that the “sliced-off” area of lowP2 displays values as low as
those seen in the Saturn ring defect core. Still, as in the case
of the largest sphere, the equatorial lowP2 region is associ-
ated with the Saturn ring defect, while the lower one corre-
sponds to a cavity observed in the corresponding density
profile. Higher degree of disordering, i.e., lowerP2 and
higher biaxiality in this latter region, is due to the higher
curvature of small spheres. LC molecules have little space to
undergo the orientational change caused by a difference in
anchoring. This is illustrated by the snapshots of the system
in Fig. 9 for the cases ofR=3 andR=6. In the former case,
LC molecules change their orientation almost in a discrete
manner from vertical at the substrate to horizontal at the
sphere surface, whereas in the latter, the orientational change
is comparatively smooth.

Another feature that distinguishes largesR=5,6d and
small sR=3,4d spheres is that the Saturn ring defect is dis-
placed slightly towards the surface for the former, but not for
the latter. Deviations of the defect from the equatorial plane
are shown by the arrows in the case of the largest sphere in
Fig. 7. The smectic layers formed at the substrate have a
higher resistance to bending, i.e., a higher elastic energy,
than the unstructured bulk nematic fluid. This change in the
elastic properties of the LC occurs over a short distance and
is a likely cause of the Saturn ring being pulled towards the
substrate from the equatorial plane of the particle to mini-

FIG. 8. (Color online) Left to right: density,P2, and biaxiality maps with the superimposed director profile in thexzplane for the sphere
of R=3 at the separations=1.

FIG. 9. (Color online) Formation of the Saturn ring defect
around the smallest(R=3, left) and largest(R=6, right) spheres at
s=1. The LC molecules are color-coded according to their orienta-
tion with the blue coinciding with the vertical axis; white dotted
line indicates the wall atz=0.

E. B. KIM AND J. J. de PABLO PHYSICAL REVIEW E69, 061703(2004)

061703-6



mize the bending energy. This effect is observed only for the
large spheres whose equatorial plane is in proximity of the
structured LC region. For small spheres, this effect is much
less pronounced due to the smaller spherical surface as well
as the length of the disclination line.

The lower elastic(repulsive) energy contributions for
small spheres are consistent with the PMF profiles: while the
PMF curves forR=3 and 4 differ mainly in the repulsive
energy at the substratefwssmin,1d−ws0dg, in both cases the
first two minima are below zero. In contrast, the PMF curves
for larger radii “lift off” with their positive local minima and
give an overall repulsive character to the sphere-substrate
interactions. Therefore, it is plausible to conclude that this
change from repulsive to slightly attractive or neutral behav-
ior takes place when LC molecules are of the order of the
radius of a sphere. We find that two layers away from the
surface the disclination line is not attracted to the substrate
for all four sphere sizes examined in this work.

V. CONCLUSION

We have applied the recently developed ExEDOS Monte
Carlo simulation method to study the behavior of spherical
colloidal particles dispersed in confined liquid crystal. In this
work we examined in detail the effect of colloid size on its
effective, LC-mediated interaction with the substrate. In par-
ticular, free energy profiles were obtained by integrating the
mean force as a function of the sphere separation from the
surface. The layered structure of the LC near surfaces pro-
foundly influences the mean force(and the potential of mean
force) on the sphere. Liquid crystal layers(or oscillations in
the density profile) of the confined system give rise to out-

of-phase undulations in the PMF profiles, and reveal the
sphere’s preference to reside in the middle of the layers. The
energy is lower when the spacing between the substrate and
the surface of the sphere is such that an integer number of
LC layers of characteristic thickness can be accommodated.
Once the solvent density loses structure, approximately four
layers away from the surface, the PMF and mean force
curves become featureless. From the free energy profiles we
are able to discern a qualitative change in the interactions
between a sphere and the substrate when the radius of the
sphere is roughly twice the length of a liquid crystal mol-
ecule sR=5−6d. Most notably, the slight attraction to the
substrate switches to global repulsion. This is consistent with
the observation of purely repulsive forces between a colloi-
dal sphere and a substrate in a continuum description[4,8].
In addition, when the separation between the interfaces iss
=1, the Saturn ring defect that accompanies larger spheres
sR=5,6d is displaced slightly towards the substrate. In the
case of the two smallest spheres considered here, an addi-
tional anomaly may be observed. The abruptness with which
the molecules change their orientations in their tendency to
satisfy anchoring homeotropic conditions on both interfaces
in the region where sphere and substrate meet is responsible
for this anomaly.
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